

Measurement of SO₂, NO₂, HNO₃ and NH₃ and related particulate matter at a sub-urban site in a sub-tropical region

RANJIT KUMAR¹, S.S. SRIVASTAVA¹ and K. MAHARAJ KUMARI¹

¹Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute

Measurements of atmospheric concentration of gaseous SO₂, NO₂, HNO₃ and NH₃ and their related particulate matter SO₄²⁻, NO₃⁻ and NH₄⁺ has been done at Dayalbagh a sub urban site in tropical India. Atmospheric annual mean concentrations are 3.5 ± 1.4 , 5.4 ± 1.5 , 1.5 ± 0.8 and $10.5 \pm 2.4 \,\mu g \, m^{-3}$, respectively and 2.7, 1.2 and 3.6 $\mu g \, m^{-3}$. SO₂ and NO₂ show highest concentration in winter; HNO₃ shows highest concentration in summer; NH₃ shows highest concentration in monsoon while maximum concentration has been observed in summer for particulate SO₄²⁻ and NO₃⁻ and in monsoon for NH₄⁺. Summer to winter ratio of HNO₃ and particulate NO₃⁻ are 2.1 and 1.7, respectively, showing seasonal variation is more pronounced in case of HNO₃ than particulate NO₃⁻. The ratio of gaseous NH₃ to particulate NH₄⁺ (NH₃/NH₄⁺) is more than 1 probably due to basic nature of aerosol. Examination of equilibrium between gaseous NH₃ and HNO₃ and particulate NH₄NO₃ shows observed equilibrium constant is lower than theoretical equilibrium constant in summer and vice versa in winter.

Key word: Gas, particulate, concentration, seasonal variation, equilibrium constant